Saturday, August 28, 2010

Electrons and Energy

Electrons, because they move so fast (approximately at the speed of light), seem to straddle the fence separating energy from matter. Albert Einstein developed his famous E=mc2 equation relating matter and energy over a century ago. Because of his (and others) work, we think of electrons both as particles of matter (having mass is a property of matter) and as units (or quanta) of energy. When subjected to energy, electrons will acquire some of that energy....
(Watch this video -- it's very short)



An orbital is also an area of space in which an electron will be found 90% of the time. Orbitals have a variety of shapes. Each orbital has a characteristic energy state and a characteristic shape. The s orbital is spherical. Since each orbital can hold a maximum of two electrons, atomic numbers above 2 must fill the other orbitals. The px, py, and pz orbitals are dumbbell shaped, along the x, y, and z axes respectively.

Energy levels (also referred to as electron shells) are located a certain "distance" from the nucleus. The major energy levels into which electrons fit, are (from the nucleus outward) K, L, M, and N. Sometimes these are numbered, with electron configurations being: 1s22s22p1, (where the first shell K is indicated with the number 1, the second shell L with the number 2, etc.). This nomenclature tells us that for the atom mentioned in this paragraph, the first energy level (shell) has two electrons in its s orbital (the only orbital it can have), and second energy level has a maximum of two electrons in its s orbital, plus one electron in its p orbital.


Go on to next section

No comments:

Post a Comment

Put your initials or something here when you have finished the lesson.